Illuminating Engineering Society

Illuminating Engineering Society


Established in 1906, the IES is the recognized technical and educational authority on illumination. For over 100 years its objective has been to communicate information on all aspects of good lighting practice to its members, to the lighting community, and to consumers through a variety of programs, publications, and services.

Click the links below to see answers to frequently asked questions about Ultraviolet Germicidal Irradiation and COVID-19:

IES Frequently Asked Questions This information can also be found in the 5/5/2020 IES Committee Report
  • What is germicidal UV, and what is UVGI?

    Germicidal UV (GUV) refers to using ultraviolet radiant energy to inactivate bacteria, mold spores, fungi or viruses. When the process is applied in a given location, it has generally been referred to as ultraviolet germicidal irradiation (UVGI). Because of the public’s concern about ionizing radiation (e.g., X-rays and gamma rays), the term GUV avoids needless concerns about a link with that type of radiation. Another non-technical term is germicidal light, although “light” is technically only visible radiation.

  • Is all ultraviolet considered germicidal ultraviolet? (GUV)

    No. Germicidal ultraviolet (GUV) – refers to short-wavelength ultraviolet “light” (radiant energy) that has been shown to kill bacteria and spores and to inactivate viruses. Wavelengths in the photobiological ultraviolet spectral band known as the “UV-C,” from 200 to 280 nanometers (nm), have been shown to be the most effective for disinfection, although longer, less energetic UV can also disinfect if applied in much greater doses. UV-C wavelengths comprise photons (particles of light) that are the most energetic in the optical spectrum (comprising UV, visible, and infrared) and therefore are the most photochemically active. 

  • Can UV-C kill viruses as well as bacteria?

    Yes, UV-C kills living bacteria, but viruses are technically not living organisms; thus, we should correctly say “inactivate viruses.” Individual, energetic UV-C photons photochemically interact with the RNA and DNA molecules in a virus or bacterium to render these microbes non-infectious. This all happens on the microscopic level. Viruses are less than one micrometer (µm, one-millionth of a meter) in size, and bacteria are typically 0.5 to 5 µm.

  • Can UV-C effectively inactivate the SARS-CoV-2 virus, responsible for COVID-19?

    Yes, if the virus is directly illuminated by UV-C at the effective dose level. UV-C can play an effective role with other methods of disinfection, but it is essential that individuals be protected to prevent UV hazards to the eyes and skin as elaborated in Section 4. UV-C should not be used to disinfect the hands!

  • Can near-ultraviolet (UV-A) lamps, such as UV insect traps, be used for GUV?

    No. UV-A and longer (visible) wavelengths do not have germicidally effective emission wavelengths to inactivate viruses. Their relative disinfection capability is very minimal on the order of 1,000 times less effective in terms of fluence rate than the low-pressure mercury germicidal lamp. There have been only very special applications of wavelengths in the UV-A and violet (e.g., 405 nm), which require very high doses not practical in an occupied environment and were not recommended for viral sterilization. The trace amount of UV-B that is emitted from some white-light fluorescent lamps probably has similar efficacy.


    Light-emitting diodes (LEDs) have been available for some time in the UV-A region. The advantage of UV-A or visible-light LEDs would be that they can easily be incorporated into LED-based luminaires, and there might be no need for protective gear. However, the efficacy of violet or UV-A energy that is not harmful to the skin or eyes is minimal.

  • What about UV-B lamps for GUV?

    UV-B (280 to 315 nm), particularly the shorter wavelengths near 300 nm and below, can be relatively effective as a germicidal source, but in accidental exposures there is a significantly higher risk for severe sunburn and even delayed effects for both skin and eyes, because UV-B penetrates the skin more deeply.

  • Does ultraviolet in sunlight have a GUV effect?

    Yes, particularly in the late spring and early summer when the sun is high in the sky and the UV index is high. At a UV Index of 10, the duration to achieve at least a three-log kill of bacteria (99.9% killed) is estimated as less than one hour.[5]


    [5] Lytle CD, Sagripanti J-L. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol. 2005;79(22):14244-52.

Share by: